Краткая информация о проекте

Наименование	AP14870308 «Разработка технологии каталитического
	нефтехимического синтеза кислородсодержащих соединений
	из ароматических углеводородов в присутствии
	наноразмерных магнитных композитов»
	Рук. проекта Шакиева Т.В.
Актуальность	Республика Казахстан обладает нефтеперерабатывающей
AKTYAJIBNOCIB	промышленностью. Кроме производства различных видов
	жидкого топлива, масел и смолисто-асфальтеновых
	компонентов стоит вопрос получения кислородсодержащих
	соединений, которые применяются в качестве растворителей,
	исходных веществ для многочисленных органических
	синтезов, в качестве мономеров при производстве
	полимерных материалов, красителей, синтетических
	волокон, лекарственных препаратов, сырья для
	синтетических моющих средств, ароматизаторов, ПАВ и т.д.
	Поэтому разработка получения кислородсодержащих
	соединений из углеводородов с использованием
	наноразмерных магнитоуправляемых композитов,
	заслуживает самого пристального внимания. Подобные
	каталитические системы позволяют проводить процесс
	окисления углеводородов в мягких условиях в жидкой фазе.
	Однако до сих пор отсутствуют исследования, результаты
	которых сводят воедино основные закономерности
	каталитических реакций, идущих с участием углеводородов
	различной структуры, и их кислородсодержащих
	производных, которые широко используются во многих
	отраслях народного хозяйства. Синтезы
	кислородсодержащих соединений являются
	многостадийными времязатратными, а для получения
	целевых продуктов требуется дополнительная очистка. В
	рамках проекта будут разработаны наноразмерные
	магнитные композиты переходных металлов,
	иммобилизованных на полимерную матрицу. Такие
	катализаторы обладают большой площадью поверхности,
	простотой отделения от реакционной смеси, их активность и
	селективность можно регулировать магнитным полем.
Цель	Целью проекта является разработка технологии
	каталитического нефтехимического синтеза
	кислородсодержащих соединений из ароматических
	углеводородов в присутствии наноразмерных магнитных
	композитов, стабилизированных полимерами.
Задачи	1. Получение наноразмерных магнитных композитов на
	основе Fe ₃ O ₄ , CoFe ₂ O ₄ , иммобилизованных на хитозан и
	поливинилпирролидон методами химического осаждения
	или механохимического синтеза.
	2. Изучение фазового состояния, структуры и
	распределения по размерам полученных наноматериалов и их
	композитов.
	3. Характеризация магнитных параметров получаемых
	гибридных материалов (коэрцитивная сила, намагниченность
·	

насыщения и др.).

- 4. Оптимизация составов магнитных композитов для процесса окисления ароматических углеводородов (фенол, пксилол). Детальное изучение и количественное описание кинетики окисления ароматических углеводородов кислородом в присутствии разработанных наноразмерных магнитоуправляемых композитов.
- 5. Разработка аппаратурно-технологической схемы, технологического регламента получения функциональных гибридных материалов.
- 6. Выдача рекомендаций по использованию результатов каталитического нефтехимического синтеза кислородсодержащих соединений из ароматических углеводородов на магнитных композитах.

Ожидаемые и достигнутые результаты

- В рамках проекта достигнуты и ожидаются следующие результаты:
- Получены наноразмерные магнитные композиты железа и кобальта, стабилизированные природным (хитозан) и синтетическим (поливинилпирролидон) полимерами.
- Современными физико-химическими методами (РФД, сканирующая электронная микроскопия, БЭТ, элементный и химический анализ) установлены состав и структура полученных композитов. С помощью Мёссбауэровской, ЭПР-, ИК-спектроскопии установлен состав, окислительное состояние металла, с помощью магнитометра и гистерезисографа изучены магнитные свойства полученных магнитных композитов.
- В вихревом режиме в термостатированных условиях будет детально изучена и количественно описана кинетика окисления фенола (ТМФ) кислородом в присутствии разработанных наноразмерных магнитоуправляемых композитов в магнитном поле и без него.
- В вихревом режиме в термостатированных условиях будет детально изучена и количественно описана кинетика окисления параксилола кислородом в присутствии разработанных наноразмерных магнитоуправляемых композитов в магнитном поле и без него.
- Будут оптимизированы технологические параметры получения, а также проведены испытания активности и селективности разработанных катализаторов в процессе окисления фенола кислородом и окисления параксилола. Будет разработана технологическая схема и технологический регламент получения каталитических композитов.

Имена и фамилии членов исследовательской группы с их идентификаторами (Scopus Author ID, Researcher ID, ORCID, при наличии) и ссылками на

- 1. Шакиева Т.В. к.х.н., Индекс Хирша —4. Scopus author ID: 55911739700. ORCID ID: https://orcid.org/0000-0002-9664-442x
- 2. Досумова Б.Т. к.х.н., Индекс Хирша— 3. Scopus author ID: 57210592713. ORCID ID: https://orcid.org/0000-0003-4126-2907.
- 3. Сасыкова Л.Р. . к.х.н., Индекс Хирша 15. Scopus Author ID: 56178673800. ORCID ID: https://orcid.org/0000-0003-4721-9758

соответствующие	4. Байжомартов Б.Б. доктор PhD, Индекс Хирша – 3.
профили	Scopus author ID: 55911449500. ORCID ID:
	https://orcid.org/0000-0002-3221-114x.
	5. Джаткамбаева У.Н. магистр, Индекс Хирша – 3.
	ORCID ID: https://orcid.org/0000-0001-8216-3206
	6. Илмуратова М.С. Индекс Хирша – 1. Scopus Author ID:
	57262368200. ORCID ID: https://orcid.org/0000-0001-7773-6057.
Список публикаций со	1. L. R. Sassykova, B.T. Dossumova, M. Ilmuratova, T. V.
ссылками на них	Shakiyeva, B. B. Baizhomartov, A. R. Sassykova, Zh. M.
	Zhaxibayeva, T.S. Abildin. Development of nanostructured
	catalysts for catalytic oxidative water purification from organic
	impurities, including phenolic compounds //Chimica Techno
	Acta 2023, vol. 10(3), No. 202310309. DOI:
	10.15826/chimtech.2023.10.3.09
	2. B.T. Dossumova, L. R. Sassykova, T. V. Shakiyeva, M. S.
	Ilmuratova, A.R. Sassykova, A.A. Batyrbayeva, Zh. M.
	Zhaxibayeva, U.N. Dzhatkambayeva and B.B.Baizhomartov
	Catalysts Based on Nanoscale Iron and Cobalt Immobilized on
	Polymers for Catalytic Oxidation of Aromatic Hydrocarbons:
	Synthesis, Physico-Chemical Studies, and Tests of Catalytic
	Activity. //Processes 2024, 12(1), 29;
	https://doi.org/10.3390/pr12010029.
Информация о патентах	-